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Outline 
• Phase transition models on Networks  

– Ising model, Epidemic spreading, Synchronization, ..  [MF] 
 

• Phase transitions on Complete Graph (all-to-all connections)   [`MF`] 
 

• Phase transitions on Sparse networks 
–  ER Random networks  &  Scale-free networks  [“MF”] 

 
• Annealed approximation  for  quenched networks  (annealed networks) [^MF^] 

 

– Issue: validity of annealed approximation with quenched link disorder 
                 *  transition point shift due to local correlations generated by  quenched disorder. 
                 *  transition nature ??  [MF regime: quenched disorder usually irrelevant] 
    

– (example) Kuramoto model for synchronization 
                  *  intrinsic frequency distribution:  unimodal/uniform/bimodal/… 
                  *   transition nature changes [“MF” ≠ ^MF^] even for ER networks. 
 

– Ising model,  Contact process, …  
                   * finite-size scaling  changes for highly heterogeneous SF networks! 

 

• Remarks  



Phase transition models on Networks 

• Ising model  
• Synchronization 

Adjacency matrix 

•   nodes  and  links 
•   no distance information  (∞ dim.) 
•        :  number of nodes  
•        :  degree  of the i-th node 
•        :  degree distribution 

Network 



Complete graph 

Easy to solve analytically and  Mean-field (`MF`) result. 

Ising model 

Kuramoto model 

Rescaling  
the coupling constant 

by N  

ER networks Scale-free networks 

 Quenched disorder in link configuration 

Sparse networks 

Difficult to solve analytically -  replica tricks/numerics   --  “MF” 
ER networks :  “MF” ~ `MF` ??  
Annealed approximations  --  ^MF^ , and   ^MF^ ~ “MF” ?? 



Example:  Synchronization  

Random frequency :  unimodal  dist. 

Kuramoto model  on  CG  

Synchronization 
   transition 



Phase Order parameter 

Steady state (long-time limit) 

Kuramoto model  on  CG  



Self-consistency equation 

Mean field (MF) scaling  

 slow  & gradual entrainment of 
oscillators with small frequencies to 
large frequencies . 



Kuramoto model  on  CG  

Random frequency :  uniform dist. 

 sudden & full entrainment of oscillators 
 Why?  High-freq. oscillators are strong enough  
                         to destabilize  synchronization of  low-freq. oscillators.  



 1st order jump 

Random frequency :  bimodal dist. 

 1st order jump +  group dynamics 



Kuramoto model  on  Sparse networks  

•   Many people use the uniform  freq. distribution on quenched networks, 
         just for convenience, in numerical simulations. 
•   Seems finding a continuous & ordinary MF transition.   How? 
•   Different from the CG result ! 
•   What would be the result in “annealed” approximations? Ordinary MF? 
•   Same results on “quenched” networks? 

Local fields 



Kuramoto model  on  Sparse networks  

Global field   per link 

 Annealed approximation 



Self-consistency equation 

Logarithmic scaling  
 (very unusual MF) 

Random frequency :  Uniform dist. 

 ER random networks 

 Different from CG result 

 degrees bounded from above : jump 

^MF^ ~`MF`  / 



 ER random networks :  Quenched Uniform freq. dist. 



Scaling collapse  



Numerical results on the quenched ER network 

unimodal bimodal uniform 

MF: 2nd order MF: 1st  order  MF: log behavior 



Synchronization  with uniform/bimodal freq. distribution 
Results on CG  & annealed & quenched ER networks are ALL different !!! 
 

 Results on quenched networks seem identical to the results of the 
ordinary MF theory with unimodal freq. distribution.  
    Why?  
     -  Oscillator frequency is effectively modified  by  
             the environments through interactions.  
     *  Additional distribution (noise)  may be relevant ! (annealed X) 
     *  Some low-freq. oscillators in hostile environments  
             could not participate in synchronization. . (CG X) 
     * High-freq. oscillators cannot destabilize all low-freq.  
             oscillators due to limited (quenched) connections.  (CG X) 
 

     “Effective” frequency distribution  
                                      before the onset of macroscopic synchronization ?? 



Effect of additional “additive” noise 

 Additional noise gives additional concaveness near zero frequency !  

Effective frequency distribution 

Possibility for the 2nd order continuous transition 
   even for uniform and bimodal freq. distribution 







Remarks 

• How much can you convince yourself that you are doing a right 
calculation (annealed approximation) even when you are dealing with 
seemingly innocent  “uncorrelated” Erdos-Renyi random networks? 
 

• How one can categorize the cases where simple annealed MF 
calculations are good enough for sparse ER or SF networks ? 
 

• The MF theory on the complete graph may not work else where. 
 
• Which case applies to high-dimensional MF behavior? 
 

• Up to now just case by case. Any systematic understanding possible? 
 

• Still lacks a full story (understanding) even for synchronization prob. 
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