

Phase Transitions on Networks :- synchronization as an example

Hyunggyu Park (KIAS)

with Jaegon Um (KIAS) and H Hong (JBNU)

Talk at NATO Advanced Research Workshop on Complex System Physics, Samarkand, Uzbekistan(May 20, 2013)

FIFA WORLD CUP	News Photos	Videos	Qualifie	rs Organi	isation	Des	tinati	on 2	014 M	latch
	Groups and Standin	ngs /	frica A	ia Europe	N./C.	Ameri	ca & C	aribbea	n Oc	ceania
	RS									
A Ro	Sia News Mate	ches Gro	oups and S	tandings Te d 5 Intercon	ams F	ormat Play-Off	Statis	stics F	Photos	
ROUP A	Sia News Mate	ches Gro nd 3 <u>Rou</u> n	oups and S nd 4 Roun	tandings Te d 5 Intercon	ams F	ormat Play-Off	Stati:	stics F	Photos	
Roup A Team	Sia News Mate	ches Gro nd 3 <u>Rou</u> i	oups and S nd 4 Roun	tandings Te d 5 Intercon MP	ams F tinental W	ormat Play-Off D	Statis fs L	stics F	Photos GA	Pts
ROUP A Team	Sia News Mate	ches Gro nd 3 <u>Rou</u>	oups and S nd 4 Roun	tandings Te d 5 Intercon MP 6	ams F tinental W 3	ormat Play-Off D 2	Stati: fs L 1	stics F GF 6	ohotos GA 4	Pts 11
ROUP A Team Uzbekista	Sia News Mate	ches Gro	oups and S nd 4 Roun	tandings Te d 5 Intercon MP 6 5	ams F tinental W 3 3	ormat Play-Off D 2 1	Statis	Stics F GF 6 11	GA 4 5	Pts 11
ROUP A Team Uzbekista Korea Rep Iran	News Mate	ches Gro	oups and S nd 4 Roun	tandings Te d 5 Intercon MP 6 5 5	ams F tinental W 3 3 2	Play-Off D 2 1	Statis	stics F GF 6 11 2	GA 4 5 2	Pts 11 10 7
A Ro ROUP A Team Uzbekista Korea Rep Iran Qatar	Sia News Mate	ches Gro	oups and S	tandings Te d 5 Intercon 6 5 5 6	ams F tinental W 3 3 2 2	Play-Off D 2 1 1 1	Statis	stics F GF 6 11 2 4	GA 4 5 2 7	Pts 11 10 7 7

11/05/12 10/00 105/1010				212 (111)				4	
11/06/13 20:00 Seoul	💽 Korea Republic	-			Uzbekistan 🔚				
Team		MP	w	D	L	GF	GA	Pts	
Japan		6	4	1	1	14	4	13	
🚬 Jordan		6	2	1	з	6	12	7	
Australia		5	1	з	1	6	6	6	
🪈 Oman		6	1	з	2	6	9	6	
Iraq		5	1	2	2	4	5	5	

http://www.statphys25.org/

STATPHYS25

XXV IUPAP International Conference on Statistical Physics

July 22 ~ 26, 2013 Seoul National University, Seoul, Korea

Outline

- Phase transition models on Networks
 - Ising model, Epidemic spreading, Synchronization, .. [MF]
- Phase transitions on Complete Graph (all-to-all connections) [`MF`]
- Phase transitions on Sparse networks
 - ER Random networks & Scale-free networks ["MF"]
- Annealed approximation for quenched networks (annealed networks) [^MF^]
 - Issue: validity of annealed approximation with quenched link disorder
 - * transition point shift due to local correlations generated by quenched disorder.
 - * transition nature ?? [MF regime: quenched disorder usually irrelevant]
 - (example) Kuramoto model for synchronization
 - * intrinsic frequency distribution: unimodal/uniform/bimodal/...
 - * transition nature changes ["MF" \neq ^MF^] even for ER networks.
 - Ising model, Contact process, ...

* finite-size scaling changes for highly heterogeneous SF networks!

• Remarks

Phase transition models on Networks

- nodes and links
- **no** distance information (∞ dim.)
- N : number of nodes
- k_i : degree of the i-th node
- •P(k): degree distribution

Adjacency matrix

$$a_{ij} = \begin{cases} 1 & \text{wh} \\ 0 & \text{wh} \end{cases}$$

when nodes i, j are linked, when nodes i, j are not linked.

- Ising model
- Synchronization

$$H[\{s\}] = -J \sum_{i,j} a_{ij} s_i s_j \text{ with } s_i = \pm 1$$

$$\dot{\phi}_i = \omega_i - K \sum_j a_{ij} \sin(\phi_i - \phi_j)$$

Complete graph

$$a_{ij} = 1$$
 for all ij . $\sum_{i,j} a_{ij} \sim N^2$ Rescaling
the coupling constant
by NIsing model $H[\{s\}] = -\frac{J}{N} \sum_{i,j} s_i s_j$ Rescaling
the coupling constant
by NKuramoto model $\phi_i = \omega_i - \frac{K}{N} \sum_j \sin(\phi_i - \phi_j)$ Easy to solve analytically and Mean-field (`MF`) result.Sparse networks $\sum_{i,j} a_{ij} \sim N$ ER networks $P(k) \sim e^{-k}$ Scale-free networksP(k) $\sim k^{-\gamma}$ Quenched disorder in link configuration a_{ij} Difficult to solve analytically - replica tricks/numerics-- "MF"ER networks : "MF" ~ `MF` ??Annealed approximations -- "MF^, and "MF^ ~ "MF" ??

Example: Synchronization

high

K

$$\frac{d\phi_i}{dt} = \omega_i - K \sum_{j=1}^N \mathbf{a_{ij}} \sin(\phi_i - \phi_j)$$

Random frequency : unimodal dist.

$$\langle \omega_i \rangle = \bar{\omega} \quad \text{and} \quad \langle \omega_i \omega_j \rangle = 2\sigma \delta_{ij}$$

Kuramoto model on CG

$$g(\omega)$$
 unimodal $\bar{\omega}$ ω

$$\frac{d\phi_i}{dt} = \omega_i - \frac{K}{N} \sum_{j=1}^N \sin\left(\phi_i - \phi_j\right)$$

Kuramoto model on CG

$$\frac{d\phi_i}{dt} = \omega_i - \frac{K}{N} \sum_{j=1}^N \sin\left(\phi_i - \phi_j\right)$$

$$\langle \omega_i \rangle = 0$$
 and $\langle \omega_i \omega_j \rangle = \delta_{ij}$

 $g(\omega)$

Phase Order parameter

$$\frac{d\phi_i}{dt} = \omega_i - K\Delta\sin(\phi_i - \theta)$$

Steady state (long-time limit)

$$\overline{\frac{d\phi_i}{dt}} = \overline{\omega_i} = \begin{cases} 0, & |\omega_i| < K\Delta \text{ (entrained)} \\ \sqrt{\omega_i^2 - (K\Delta)^2}, & |\omega_i| > K\Delta \text{ (running)} \\ |\omega_i| < K\Delta & (\text{running}) \\ -K\Delta & 0 & K\Delta \end{cases}$$

- sudden & full entrainment of oscillators
- Why? High-freq. oscillators are strong enough to destabilize synchronization of low-freq. oscillators.

Kuramoto model on Sparse networks

- Many people use the uniform freq. distribution on quenched networks, just for convenience, in numerical simulations.
- Seems finding a continuous & ordinary MF transition. How?
- **Different** from the CG result !
- What would be the result in "annealed" approximations? Ordinary MF?
- Same results on "quenched" networks?

Kuramoto model on Sparse networks

$$h_i e^{i\theta_i} \equiv \sum_{j=1}^N a_{ij} e^{i\phi_j}$$

$$\frac{d\phi_i}{dt} = \omega_i - K \frac{h_i}{i} \sin(\phi_i - \theta_i)$$

Annealed approximation

$$a_{ij} \approx \frac{k_i k_j}{N \langle k \rangle}$$

Global field per link

$$He^{i\theta} \equiv \frac{h_i}{k_i}e^{i\theta_i} = \frac{1}{N}\sum_{j=1}^N \frac{k_j}{\langle k \rangle}e^{i\phi_j}$$

$$\Delta e^{i\theta} \equiv \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j}$$

$$\frac{d\phi_i}{dt} = \omega_i - \underbrace{Kk_i}_{\bullet} H \sin(\phi_i - \theta)$$

$$\frac{d\phi_i}{dt} = \omega_i - K\Delta\sin(\phi_i - \theta)$$

Oscillators with high k experiences strong coupling field kK.

ER random networks : Quenched

Uniform freq. dist.

(K-0.1648)N^{2/5}

Numerical results on the quenched ER network $\langle k \rangle = 4$

$$\dot{\phi}_i = \omega_i - K \sum_{j=1}^N a_{ij} \sin(\phi_i - \phi_j)$$
 $\Delta = \left\langle \frac{1}{N} \left| \sum_{j=1}^N e^{i\phi_j} \right| \right\rangle \sim \sqrt{K - K_c} \text{ regardless of } g(\omega)$

Synchronization with uniform/bimodal freq. distribution

- •Results on CG & annealed & quenched ER networks are ALL different !!!
- Results on quenched networks seem identical to the results of the ordinary MF theory with unimodal freq. distribution.
 Why?
 - Oscillator frequency is effectively modified by the environments through interactions.
 - * Additional distribution (noise) may be relevant ! (annealed \mathbf{X}) $\mathbf{\bullet}$
 - * Some low-freq. oscillators in hostile environments could not participate in synchronization. . (CG X)
 - * High-freq. oscillators cannot destabilize all low-freq. oscillators due to limited (quenched) connections. (CG X)
 - "Effective" frequency distribution

before the onset of macroscopic synchronization ??

Effect of additional "additive" noise
$$\omega_i^e \equiv \omega_i + \eta_i$$
with $\eta_i \sim \frac{1}{k_i} \sum_j a_{ij} \omega_j$ (average n.n ω)For simplicity, assume η_i are independent and
Gaussian random variable with $\langle \eta^2 \rangle \sim \langle \omega^2 \rangle / \langle k \rangle$. η_i , η_j are NOT independent, if nodes i, j share the same neighbors.

Effective frequency distribution

$$\tilde{g}(\omega^e) = \int \int \delta(\omega^e - \omega - \eta) g(\eta) g(\omega) d\omega d\eta \sim \int e^{-\langle k \rangle (\omega^e - \omega)^2/2} g(\omega) d\omega$$

Additional noise gives additional concaveness near zero frequency !

Possibility for the 2nd order continuous transition even for uniform and bimodal freq. distribution

$$\overline{\omega_{i}^{e} \equiv \omega_{i} + \eta_{i}} \quad \text{regular RN with } k =$$

$$\overline{\omega_{i}^{o} \equiv \omega_{i} + \eta_{i}} \quad \overline{\omega_{i}^{o} \approx 0}$$

$$\overline{\omega_{i}^{o} \approx 0} \quad \overline{\omega_{i}^{o} \approx 0} \quad$$

Remarks

• How much can you convince yourself that you are doing a right calculation (annealed approximation) even when you are dealing with seemingly innocent "uncorrelated" Erdos-Renyi random networks?

• How one can categorize the cases where simple annealed MF calculations are good enough for sparse ER or SF networks ?

- The MF theory on the complete graph may not work else where.
- Which case applies to high-dimensional MF behavior?
- Up to now just case by case. Any systematic understanding possible?
- Still lacks a full story (understanding) even for synchronization prob.