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Building a network

Start with a set of N nodes and establish links/edges one at a
time according to some algorithm

Start with some finite set of nodes and links/edges, and have an
algorithm to add a new node to the set

Here we are focusing on what happens to the network when the
number of connections between nodes in the network is increased
following a suppression principle: growth of all clusters are
suppressed.
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A simple suppression mechanism

Suppression of cluster size:
1 Choose 2 nodes at random, compare the clusters’ sizes, select the

one in the smaller cluster
2 Choose a second pair of nodes, do the same as above
3 Add a link between the two selected nodes

C H Lai () Spectral Analysis on Explosive Percolation May 20, 2013 4 / 17



Emergence of connectivity in a network

Giant component: the cluster in the network with the largest number
of nodes

Random network: number of nodes in the giant component
grows smoothly

Explosive percolation: number of nodes in the giant component
grows abruptly
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Explosive percolation

Achlioptas process: formation of large components is
suppressed, sudden emergence of large-scale connectivity

Emergence of giant component

possible mechanism for growth process of real-world networks
(e.g. human protein homology network)

increase the possible extent of viral (rather than localized)
outbreak? Communication speed? Information transmission?

drastic change in macroscopic connectivity by addition of a single
link: effect on network dynamics and function? (neural network,
social relations, etc.)
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Spectral Analysis

Input: the maximum eigenvalue of the adjacency matrix governs
how the spreading (of information, energy, disease, etc.) on a
network

Study the maximum eigenvalue λm of the adjacency matrix

If λm increases sharply→ enhanced efficiency of spreading

If λm remains small→ low efficiency of spreading despite the
emergence of large-scale connectivity

Explosive models explored:
1 Smallest cluster model
2 Gaussian model
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Smallest Cluster (SC) Model

1 Begin with N(= 2n) isolated nodes

2 At each step

identify the two smallest clusters
add an edge between them

3 Phase 1: first N/2 steps→ N/2 clusters of size 2
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Smallest Cluster (SC) Model

4 Phase 2: next N/4 steps→ N/4 clusters of size 4

5 · · ·
6 Phase n− 1: 2 components remain, each with size N/2

7 Phase n: Step N− 1, the size of the largest component jumps in
value by N/2
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Some analysis:

At phase y:

N/2y edges are added, total degree increases by N/2y−1, and

∂P(k, y)

∂y
=

1

2y−1
{−P(k, y) + P(k − 1, y)}

Largest degree km:

probability of node with degree y at phase y is

P(y, y) = 1/2η, η =

y−1∑
j=0

j

critical phase:

P(yc, yc) =
1

N
⇒ yc(yc − 1) = 2n
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Maximum eigenvalue, SC model

For fixed N

maximum degree km of network increases linearly with the phase
in the earlier phases
probability for km to increase beyond phase yc is very small

Maximum eigenvalue of the adjacency matrix

λm ∝
√
km

The size of the giant component increases explosively

Spreading efficiency does not increase explosively
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Results:

(a) N = 2n with n = 13, Critical Degree:

yc(yc − 1) = 2(13)→ yc ≈ 5.6

(b) N = 2n with n = 55, Critical degree:

yc(yc − 1) = 2(55)→ yc ≈ 11

Approximation (circles): that of the largest cluster

λm ≈

√
km +

〈k2〉
〈k〉2

{
〈k2〉 − k2

m

S

}
Ensemble average of 20 network realizations (triangles)

SC Model (blue), Modified SC Model (red)
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(a) N = 213; (b) N = 255

C H Lai () Spectral Analysis on Explosive Percolation May 20, 2013 14 / 17



Modified SC model

Slight variation, but still within the model:

Nodes to be connected in each step are chosen as the largest
degree nodes in the two smallest clusters

Maximum degree increases linearly with the phase

Larger λm and more efficient spreading
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(a) N = 213; (b) N = 255
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Summary

From the simplest explosive models:

1 λm does not increase explosively at percolation threshold

2 λm is smaller for explosive models compared to random
networks

3 Heterogeneous/hub structures can increase spreading efficiency
in explosive models

4 Will be interesting to extend to other models

5 Possible tuning when spreading efficiency and large-scale
connectivity are not needed concurrently
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