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- Brief information about the systems considered. 
- General dynamics of growing systems. 
- Nonlinearity and scaling relations in growing  
        (Social&Stock market) systems. 
- Scattering diagrams, and patterns. 
- Evaluation of pattern shape. 
- Viscoelastic behavior. 
- Characterization of time series systems, namely,  
         stock market indices and some social events  
         in terms of work-like and heat-like terms.   
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Ibn-i Khaldoun (1332–1406 ):  Societies are like living organisms;  
they are born, they grow, and die.  

Living organisms feed on others, multiply, and die. The growth 
pattern follows the rules of nonlinear dynamics. The nonlinearity 
of a system originates from its multiplication at the expense of 
others. 
(Chotic growth!) 

Ancient Greek Natural Philosophy :  
       - The NATURE is a  living organism. 
       - Everything in nature multiplies itself.  

Aristotle: Everything in nature is subject to continuous  
                  GENERATION and DESTRUCTION (corruption) 
                  (everything is transient.) 
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Systems are autocatalytic.  
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Self multiplying (autocatalytic) systems 

- All organisms 

  food + animal                   animal + baby animal 

- money (in saving acct.)                   money + interest (profit) 

- burning tree                burning forest 

-small gossip                  spreading gossip  
                                          (like epidemic disease)  
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Uncontrolled (explosive or chain reaction ) Systems 

1 0

2

2 1 0

n

n 0

N = N (1+i)    

N = N (1+i) = N (1+i)

.

.

N =  N (1+i)  

i = interest for saving account

235U +n X+Y+ +2.43n

i = # of neutrons in fission = 2.43
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Self Controlled Systems (Bacterial growth on an agar) 
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Verhulst: ‘i’ varies with population size, and iNlim-Nn 
Let Nlim1; thus,  i=r(1-Nn) 
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Sigmoid curve ! 
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Carrot + Rabbit     Rabbit + Rabbit 

Rabbit + Fox    Fox + Fox  

Fox     Extinct    (Carrots)  

 
     

 
    

1 2

2 3

d R
= k C R -k R F

dt

d F
= k R F -k F

dt

xn+1 = m x (1-x) 

(Logistic equation) 

Externally Controlled Systems (Lotka-Volterra problem) 
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The growth (rise) of Ottoman Empire 

Journal of Mathematical Sociology, 26 (2002) 167-187 

The growth (rise) of Roman Empire 

C. Marchetti, Productivity vs. Age,  2002 
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Ottomans 

Romans 

Scaling relation:   
 
log A = α log t 
Area    tα 
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Revolt in France 
(December 2005)  
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International  
Terror 

N = 18.6 t1.826 

Gündüz G., Physica A, 376 (2007) 579-595  
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War in Iraq 

     



   0

dN
= k      

dt

dN
= k #casualties =N N = kt 

dt

Zero order chemical reaction !

N(t)
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Order of reaction ≥ 2 



14 

Zero order reaction ! 
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Different Approaches in Literature: 

Social Systems 
- Galam: meth. of statis. mech. (probabilty, spin sys., percolation)  
- Sznajd: Ising spin model, 
- Phase transition & percolation models, 
- The Fermi equation, 
- Chaos & scaling relations. 
 
Econophysics 
- Pareto law, probabilistic methods, Gibbs distribution, entropy, 
- Chaos & scaling relations (Mandelbrot), non-equilibrium dynamics, 
- Liouville, Boltzmann, Langevin, Fokker-Planck, Black-Scholes eq.s,  
- Spin models, phase plots, phase transition, wavelet techniques,  
- Topology, anomalous diffusion, Le Chatelier principle,   
- Networks, graph theory,  
- Quantum field theory, path integrals, fuzzy logic.  
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Time Series Systems (Relation Based Systems) 
(Revolt in France) 

(Iraq) Folk song: Çemberimde Gül Oya 
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What forces drive   
   - the stock markets, social struggles, peoples’ behavior,  etc. ? 

Takayasu et al. (2006):  There is a potential force in market dynamics;  
    it moves according to its own traces as in Newtonian mechanics. 

Alfi et al. (2007) : Attractive and repulsive forces affect the index. 

Canessa (2009): The stock index dynamics is influenced by a moving  

     average of the index itself, and there can be both attractive and  
     repulsive forces affecting the index like mass-spring system. 

Tuncay (2006): Energy can be attributed to stock prices. 

- Aristotle :  The present ‘actuality’  is the  ‘potential’ of the future . 

- How do we relate TODAY to TOMORROW?   

- Today’s moving average influences tomorrow’s price. 
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Scattering Diagram of International Terror 



19 

Stretching & Folding back 

International Terror  (some of the paths) 
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Scattering Diagrams 
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The CURRENT STATE is CHANGED into NEXT STATE. 
The CURRENT STATE is  DEFORMED into NEXT STATE. 
The pattern (or the directed graph) in a scattering diagram is  
        specified by the LENGTHS and their SLOPES. 



22 



23 

      

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Note (N i)

N
e

x
t 

N
o

te
 (

N
 i+

1
)

     

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Note (N i)

N
e
x
t 
N

o
te

 (
N

 i+
1
)

 



24 

Animal diagram 
(Lattice animal) 
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Deformation of square 

dU = dq – dW + σ dA 

dA
dS

dT
 

Only surface changes ! 

NETWORK PATTERN AS A DEFORMED SURFACE 
(AN ANIMAL DIAGRAM (OR LATTICE ANIMAL) AS A DEFORMED SURFACE) 
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Surface of a  
crystalline material 

(representative of 

 an animal diagram, 
or lattice animal) 


L

# of  broken bonds along x - direction = cos
d

 = 
L

# of  broken bonds along y - direction sin
d

( )  d

L
total # of  broken bonds = n  = cos sin

d
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L
# of  broken bonds in the perpendicular direction =

d

( )   
L L

total # of  broken bonds on the entire area = cos sin
d d

By letting L=1, and attributing  ‘         ’ energy to each broken bond,  
the surface energy  E  can be given by, 

/ 2ò

2

1
( )

2
 

 
  

 
E cos sin

d

ò

If only the broken edge is taken into consideration,  

( )
2

  cosθ sin
d

 
ò
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i i i

1 1 2 2 3 3 i i....       G

An animal (i.e. lattice animal) can be characterized by its number of edges,  
or by its periphery.  Each edge can be simply expressed in terms of one or more  
integer multiples of the unit length ‘d ’ of the unit square. Since ‘σi’ denotes  
the energy of an edge, the ‘i’ th edge with length  ‘    ‘  has an energy of  ‘         ‘.  

 The total free energy ‘G’ is then simply given by,  

2 1 i i j j cG G G n          ò

where           is the change in the number of corners.  cn

Since each new corner creates a new unit edge length, the change in free energy 
becomes equal to  ‘           ’. cn ò
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Define, 

energy of lattice animal
r

total energy of unit edges


c c

d( )

n n
r

d n
 



ò

ò

d =n d r

0

0

1 45

0 0

  

  

r     

r     

as

as

  

  

where,                      .   So,     -ratio becomes independent of energy,  

and it becomes only a  ‘geometric proportion’.     

It is clear that,  

MEASURE OF DEFORMATION 

DEFORMATION OCCURS IN BOTH HORIZONTAL AND VERTICAL DIRECTIONS ! 
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DEFORMATION OF HOOKIAN SOLID  
AND NEWTONIAN FLUID 

For a Hookian solid the yx-component of strain tensor γyx is defined in terms 
of the displacement gradient tensor u as, 

 γ = +( )u u
†

Similarly, the rate-of-strain tensor for the shearing motion of a Newtonian fluid 
is defined in terms of the velocity gradient             as, v

 = +( )
† v v

Shear associated with rotation generates vorticity, and the vorticity tensor 
ω  is given by,  

  = ( )
† v v
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1

2
 = ( )

† v

That means the velocity gradient tensor           can be decomposed into its 
symmetric and antisymmetric parts . 

v

xy yx

y x

y

 
    

 

v v

x

xy yx

y x

y

 
    

 

v v

x

So it is clear that,  

xx yy

yx2 and 2          
x


   

 

vv

y

Similarly, 

xy yx y

 
    

 

u u

x
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Then, one can easily get, 

xx yy

yx2 and 2          
x


   

 

vv

y

Similarly, 

xy yx y

 
    

 

u u

x

The edge of a unit square corresponds to the unit displacement of      , (or      ) 
 along the x-axis (or y-axis). nd corresponds to the number of unit edges both  
along the x- and y-directions. That is, every unit displacement of a row along  
x- direction (i.e.      ) or of a column along y- direction (i.e.       ) increases nd. 
Therefore the total number of unit lengths (e.g. nd) along both directions is,  
 

     nd = nd,x + nd,y  

xx yy y

 
    

 

u u

x

xx


yy


xx

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
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d xx yy( )n  
y

  
      

  
 

u u

x

In the unit square dx=dy in magnitude. A one-to-one correspondence   
between  nd and the distances in the Cartesian coordinate system  
can be established.  

u = xy 

nd = nd,x + nd,y = y + x  

dx=dy  

nc ~ 2 y  

If the direction of motion is along the y-direction,  

nc ~ 2 x  
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c

d d

2
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

n n y
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n n x y
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 b

c

Consider Figure b; 

nc=14,  nd=23 

x=16,  and  y=7 

c

d

14 2 2 7

23 16 7

   
     

    

n y

n x y
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Now we can define deformation  in a different way,  

c c

d( )
  



n nenergy of lattice animal
r

total energy of unit edges d n

ò

ò

( ) 2
r

/
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= xx
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2 2
du / dx

r
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If we let                  , u y
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2 2 2 2

( ) 1 1 1
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GROWING SYTEMS 

- Waves (in plasma):  A growing wave picks up fluctuating waves in turbulent plasma.  

- A polymer  chain grows up  by eating up small chains or monomers.  

- In a stock market if a certain stock becomes attractive for some reason and people 
make up their minds to buy it, it leads to an increase in its market value. That is, it 
increases its value by picking up contributions from the stock market sea.  

 ;   log( / )  



t tFinancial market log - return R S S

S market price or money - exchange rate.

/Fractional change in polymer length = u dL L

1log( / )i iu L L 
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1 1/ ~ /  i i i ioverall subsequent change = U L L S S

1 / ,     ,  ,  ,  . i iextent of  fractional change = V V V L S n etc

G  
i i+1V G V

*

    iII

' ,    ''     G G

' ''   G G iG

'

''  





G storage modulus

G loss modulus

(in-phase) 

(out-of-phase) 
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in an evolving or already evolved network.   
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'' '' '

' ' ''

sin G
tan

cos G

  
    

  

where  η'  and  η''  are the in-phase and the out-of-phase components of 
the viscosity term.  

The term ‘tan θ’ is called ‘loss tangent’.  It denotes the ratio of the amount 
of energy distributed along the vertical and horizontal directions.  

2 2
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(Jan. 2001-Dec. 2009) 
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WORK-LIKE AND HEAT-LIKE TERMS 
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NASDAQ-100 
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NASDAQ-100 
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Revolt-Car Burning 
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Revolt-Car Burning 
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Folk Song 
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Folk Song 
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Folk Song 
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Folk Song 
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Car burning 
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Folk 
song 
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Thanks.. 

Ulug Bey 
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Autocorrelation 



VISCOELASTICITY IN STOCK INDICES 

(Data for 1,2,3,4, and 5: DJI, 2001 January – May)  

(Scattering Diagram) 
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