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Talk overview

In this talk I am going to present several recent results on resonances in
quantum graphs and generalized quantum graphs

An introduction: quantum graphs as a natural laboratory to study
resonance effects

Resonances originating from geometric perturbations

High-energy asymptotics of resonances: Weyl and non-Weyl
behaviour, and when each of them occurs

How magnetic field can influence high-energy resonance asymptotics

Generalized quantum graphs: equivalence of resonance definitions and
magnetic field influence again
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The coupling in quantum graph vertices
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The most simple example is a star
graph with the state Hilbert space H =⊕n

j=1 L
2(R+) and the particle Hamil-

tonian acting on H as ψj 7→ −ψ′′j

Since it is second-order, the boundary condition involve Ψ(0) := {ψj(0)}
and Ψ′(0) := {ψ′j(0)} being of the form

AΨ(0) + BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n × n matrices A,B give rise to a
self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique form of boundary conditions
The non-uniqueness of the above b.c. can be removed:

Proposition (Harmer’00, K-S’00)

Vertex couplings are uniquely characterized by unitary n × n matrices U
such that

A = U − I , B = i(U + I )

One can derive them modifying the argument used in [Fülöp-Tsutsui’00]
for generalized point interactions, n = 2.

Self-adjointness requires vanishing of the boundary form,
n∑

j=1

(ψ̄jψ
′
j − ψ̄′jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0)± i`Ψ′(0)‖Cn with a fixed ` 6= 0 coincide,
so the vectors must be related by an n × n unitary matrix; this gives
(U − I )Ψ(0) + i`(U + I )Ψ′(0) = 0.
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Examples of vertex coupling

Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j , k = 1, . . . , n ,
n∑

j=1

ψ′j (0) = αψ(0)

with “coupling strength” α ∈ R; α =∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called free boundary
conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′j (0) = ψ′k(0) =: ψ′(0) , j , k = 1, . . . , n ,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β =∞ we get Neumann decoupling
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What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



What is known about quantum graphs

one can approximate graph with any vertex coupling by a
Neumann-type network of tubes with shrinking diameters, with
properly scaled potentials and magnetic fields [E-Post’13]

a spectral duality mapping the problem on a difference equation:
originally by Alexander and de Gennes in the early 80’s,
mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph –
[Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a graph?”
[Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims -Warzel’06],
[E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01, Kuchment’04]

and a lot more

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 6/58



Resonances: some general observations

We note that resonances come typically from perturbations of embedded
eigenvalues. In our particular situation we have to keep in mind:

Most typical resonance situations arise for finite graphs with
semiinfinite leads

Different resonances definitions: poles of continued resolvent,
singularities of on-shell S matrix

Graphs may exhibit embedded eigenvalues due to invalidity of
uniform continuation

Frequent appearance of resonances and relative easiness to treat
them make quantum graphs natural laboratory to study these
effects
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Preliminaries

Consider a graph Γ consisting of families od vertices V = {Xj : j ∈ I},
finite edges L = {Ljn : (Xj ,Xn) ∈ IL ⊂ I × I}, and infinite edges
L∞ = {Lj∞ : Xj ∈ IC}. The corresponding state Hilbert space is

H =
⊕
Lj∈L

L2([0, lj ])⊕
⊕

Lj∞∈L∞

L2([0,∞)) ;

its elements are columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T .

The Hamiltonian acts as −d2/dx2 on each link on H2
loc functions

satisfying the boundary conditions

(Uj − I )Ψj + i(Uj + I )Ψ′j = 0

characterized by unitary matrices Uj at the vertices Xj .
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A universal setting for graphs with leads

A useful trick is to replace Γ “flower-like” graph with one vertex by putting
all the vertices to a single point,

l1

l2l3

l4

lN

Its degree is 2N + M where N := cardL and M := cardL∞

The coupling is described by “big”, (2N + M)× (2N + M) unitary block
diagonal matrix U consisting of blocks Uj as follows,

(U − I )Ψ + i(U + I )Ψ′ = 0 ;

the block structure of U encodes the original topology of Γ.
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Equivalence of different resonance definitions

Resonances as poles of analytically continued resolvent, (H − λ id)−1.
One way to reveal the poles is to use exterior complex scaling. Looking
for complex eigenvalues of the scaled operator we do not change the
compact part of the graph: we set fj(x) = aj sin kx + bj cos kx on the
j-th internal edge

On the other hand, functions on the semi-infinite edges are scaled by
gjθ(x) = eθ/2gj(xe

θ) with an imaginary θ rotating the essential spectrum
into the lower complex halfplane so that the poles of the resolvent on the
second sheet become “uncovered” for θ large enough. The “exterior”
boundary values at energy k2 are thus equal to

gj(0) = e−θ/2gjθ, g ′j (0) = ike−θ/2gjθ
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Resolvent resonances

Substituting into the boundary conditions we get

(U − I )C1(k)



a1

b1

a2

...

bN
e−θ/2g1θ

...

e−θ/2gMθ


+ ik(U + I )C2(k)



a1

b1

a2

...

bN
e−θ/2g1θ

...

e−θ/2gMθ


= 0,

where Cj := diag (C
(1)
j (k),C

(2)
j (k), . . . ,C

(N)
j (k), i j−1IM×M), with

C
(j)
1 (k) =

(
0 1

sin klj cos klj

)
, C

(j)
2 (k) =

(
1 0

− cos klj sin klj

)

Complex k which solve this condition indicate the resonance positions
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Scattering resonances

In this case we choose conventionally a combination of two planar waves,
gj = cje

−ikx + dje
ikx , as an Ansatz on the external edges; we ask about

poles of the matrix S = S(k) which maps the amplitudes of the incoming
waves c = {cn} into amplitudes of the outgoing waves d = {dn} by the
relation d = Sc .

The boundary conditions then yield

(U − I )C1(k)



a1

b1

a2

...

bN
c1 + d1

...

cM + dM


+ ik(U + I )C2(k)
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a1

b1

a2
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...

dM − cM


= 0
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Equivalence of both resonance definitions

Since we are interested in zeros of det S−1, we regard the above relation
as an equation for variables aj , bj and dj while cj are just parameters.
Eliminating the variables aj , bj one derives from here a system of M
equations expressing the map S−1d = c. It is not solvable, det S−1 = 0,
provided

det [(U − I )C1(k) + ik(U + I )C2(k)] = 0

This is the same condition as for the previous system of equations, hence
we are able to conclude:

Proposition (E-Lipovský’10)

The two above resonance notions, the resolvent and scattering one, are
equivalent for quantum graphs.
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Effective coupling on compact part of the graph

The problem can be reduced to the compact subgraph only. We write U
in the block form, U =

(
U1 U2

U3 U4

)
, where U1 is the 2N × 2N refers to the

compact subgraph, U4 is the M ×M matrix related to the exterior part,
and U2 and U3 are rectangular matrices connecting the two.

Eliminating the external part leads to an effective coupling on the compact
subgraph expressed by the condition

(Ũ(k)− I )(f1, . . . , f2N)T + i(Ũ(k) + I )(f ′1 , . . . , f
′

2N)T = 0 ,

where the corresponding coupling matrix

Ũ(k) := U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

is obviously energy-dependent and, in general, non-unitary
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A geometric perturbation: a loop with two leads

g1(x) g2(x)

f1(x)

f2(x)

0
l1
l2

The setting is as above, the boundary condition at the nodes are

f1(0) = f2(0) , f1(l1) = f2(l2) ,

f1(0) = α−1
1 (f ′1 (0) + f ′2 (0)) + γ1g

′
1(0) ,

f1(l1) = −α−1
2 (f ′1 (l1) + f ′2 (l2)) + γ2g

′
2(0) ,

g1(0) = γ̄1(f ′1 (0) + f ′2 (0)) + α̃−1
1 g ′1(0) ,

g2(0)−−γ̄2(f ′1 (l1) + f ′2 (l2)) + α̃−1
2 g ′2(0) .
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Resonance condition

Writing the loop edges as l1 = l(1− λ), l2 = l(1 + λ), λ ∈ [0, 1] – which
effectively means shifting one of the connections points around the loop
as λ is changing – one arrives at the final resonance condition

sin kl(1− λ) sin kl(1 + λ)− 4k2β−1
1 (k)β−1

2 (k) sin2 kl

+k[β−1
1 (k) + β−1

2 (k)] sin 2kl = 0 ,

where β−1
i (k) := α−1

i + ik|γi |2

1−ikα̃−1
i

.

The condition can be solved numerically to find the resonance trajectories
with respect to the variable λ.
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A pole trajectory

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 6.28  6.29  6.3  6.31  6.32  6.33  6.34

The trajectory of the resonance pole in the lower complex halfplane starting from k0 = 2π for

the coefficients values α−1
1 = 1, α̃−1

1 = −2, |γ1|2 = 1, α−1
2 = 0, α̃−1

2 = 1, |γ2|2 = 1, n = 2.

The colour coding shows the dependence on λ changing from red (λ = 0) to blue (λ = 1).
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Another pole trajectory

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 9  9.2  9.4  9.6  9.8  10  10.2

The trajectory of the resonance pole starting at k0 = 3π for the coefficients values α−1
1 = 1,

α−1
2 = 1, α̃−1

1 = 1, α̃−1
2 = 1, |γ1|2 = |γ2|2 = 1, n = 3. The colour coding is the same as in

the previous picture.
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One more pole trajectory

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 6.25  6.3  6.35  6.4  6.45  6.5  6.55  6.6  6.65  6.7

The trajectory of the resonance pole starting at k0 = 2π for the coefficients values α−1
1 = 1,

α−1
2 = 1, α̃−1

1 = 1, α̃−1
2 = 1, |γ1|2 = 1, |γ2|2 = 1, n = 2. The colour coding is the same as

above.
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Another example: a cross-shaped graph

g1(x) g2(x)
f1(x)

f2(x)

l1 = l (1− λ)

l2 = l (1 + λ)

0

This time we restrict ourselves to the δ coupling as the boundary condition
at the vertex and we consider Dirichlet conditions at the loose ends, i.e.

f1(0) = f2(0) = g1(0) = g2(0) ,

f1(l1) = f2(l2) = 0 ,

αf1(0) = f ′1 (0) + f ′2 (0) + g ′1(0) + g ′2(0) .

leading to the resonance condition

2k sin 2kl + (α− 2ik)(cos 2klλ− cos 2kl) = 0
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Pole trajectory

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 6.2  6.4  6.6  6.8  7  7.2  7.4  7.6

The trajectory of the resonance pole starting at k0 = 2π for the coefficients values α = 10,

n = 2. The colour coding is the same as in the previous figures.
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Another pole trajectory: an anholonomy

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 6  7  8  9  10  11  12

The trajectory of the resonance pole for the coefficients values α = 1, n = 2. The colour

coding is the same as above.
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More trajectories: an avoided crossing

-2.5

-2

-1.5

-1

-0.5

 0

 6  6.5  7  7.5  8  8.5  9  9.5  10  10.5  11

The trajectories of two resonance poles for the coefficients values α = 2.596, n = 2. We can

see an avoided resonance crossing – the former eigenvalue “travelling from the left to the right”

interchanges with the former resonance “travelling the other way” and ending up as an

embedded eigenvalue. The colour coding is the same as above.
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High-energy asymptotics

We begin form a deep insight by [Davies-Pushnitski’11] who looked into
high-energy asymptotics of graph resonances. As usual counting function
N(R,F ) is the number of zeros of F (k) in the circle {k : |k | < R} of
given radius R > 0, algebraic multiplicities taken into account.

If the function F comes from resonance secular equation we count in this
way number of resonances within the given circle. By resonances we mean
here both the ‘true’ resonances and embedded eigenvalues

They made an intriguing observation: if the coupling is Kirchhoff and
some external vertices are balanced, i.e. connecting the same number of
internal and external edges, then the leading term in the asymptotics may
be less than Weyl formula prediction

Let us look how the situation looks like for graphs in which Kirchhoff is
replaced by a more general vertex couplings

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 24/58



High-energy asymptotics

We begin form a deep insight by [Davies-Pushnitski’11] who looked into
high-energy asymptotics of graph resonances. As usual counting function
N(R,F ) is the number of zeros of F (k) in the circle {k : |k | < R} of
given radius R > 0, algebraic multiplicities taken into account.

If the function F comes from resonance secular equation we count in this
way number of resonances within the given circle. By resonances we mean
here both the ‘true’ resonances and embedded eigenvalues

They made an intriguing observation: if the coupling is Kirchhoff and
some external vertices are balanced, i.e. connecting the same number of
internal and external edges, then the leading term in the asymptotics may
be less than Weyl formula prediction

Let us look how the situation looks like for graphs in which Kirchhoff is
replaced by a more general vertex couplings

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 24/58



High-energy asymptotics

We begin form a deep insight by [Davies-Pushnitski’11] who looked into
high-energy asymptotics of graph resonances. As usual counting function
N(R,F ) is the number of zeros of F (k) in the circle {k : |k | < R} of
given radius R > 0, algebraic multiplicities taken into account.

If the function F comes from resonance secular equation we count in this
way number of resonances within the given circle. By resonances we mean
here both the ‘true’ resonances and embedded eigenvalues

They made an intriguing observation: if the coupling is Kirchhoff and
some external vertices are balanced, i.e. connecting the same number of
internal and external edges, then the leading term in the asymptotics may
be less than Weyl formula prediction

Let us look how the situation looks like for graphs in which Kirchhoff is
replaced by a more general vertex couplings

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 24/58



Recall the resonance condition

Denote e±j := e±iklj and e± := ΠN
j=1e

±
j , then the secular equation is

0 = det

{
1

2
[(U−I ) + k(U+I )]E1(k) +

1

2
[(U−I ) + k(U+I )]E2 + k(U+I )E3

+ (U−I )E4 + [(U−I )− k(U+I )] diag (0, . . . , 0, IM×M)

}
,

where Ei (k) = diag
(
E

(1)
i ,E

(2)
i , . . . ,E

(N)
i , 0, . . . , 0

)
, i = 1, 2, 3, 4, consists

of N nontrivial 2× 2 blocks

E
(j)
1 =

(
0 0

−ie+
j e+

j

)
, E

(j)
2 =

(
0 0

ie−j e−j

)
, E

(j)
3 =

(
i 0

0 0

)
, E

(j)
4 =

(
0 1

0 0

)

and the trivial M ×M part.

Looking for zeros of the rhs we can employ a modification of a classical
result on zeros of exponential sums [Langer’31]
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Exponential sum zeros

Theorem (Langer’31)

Let F (k) =
∑n

r=0 ar (k) eikσr , where ar (k) are rational functions of the
complex variable k with complex coefficients, and the numbers σr ∈ R
satisfy σ0 < σ1 < · · · < σn. Suppose that limk→∞ a0(k) 6= 0 and
limk→∞ an(k) 6= 0. Then there are a compact Ω ⊂ C, real numbers mr

and positive Kr , r = 1, . . . , n, such that the zeros of F (k) outside Ω lie in
the logarithmic strips bounded by the curves −Im k + mr log |k | = ±Kr

and the counting function behaves in the limit R →∞ as

N(R,F ) =
σn − σ0

π
R +O(1)
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Application of Langer theorem

We need the coefficients at e± in the resonance condition. Let us pass
to the effective b.c. formulation,

0 = det

{
1

2
[(Ũ(k)− I ) + k(Ũ(k) + I )]Ẽ1(k)

+
1

2
[(Ũ(k)− I )− k(Ũ(k) + I )]Ẽ2(k) + k(Ũ(k) + I )Ẽ3 + (Ũ(k)− I )Ẽ4

}
,

where Ẽj are the nontrivial 2N × 2N parts of the matrices Ej and I
denotes the 2N × 2N unit matrix

By a direct computation we get

Lemma

The coefficients of senior and junior term, e± respectively, in the above

equation are
(
i
2

)N
det [(Ũ(k)− I )± k(Ũ(k) + I )]
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where Ẽj are the nontrivial 2N × 2N parts of the matrices Ej and I
denotes the 2N × 2N unit matrix

By a direct computation we get

Lemma

The coefficients of senior and junior term, e± respectively, in the above

equation are
(
i
2

)N
det [(Ũ(k)− I )± k(Ũ(k) + I )]
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The resonance asymptotics

Theorem (Davies-E-Lipovský’10)

Consider a quantum graph (Γ,HU) corresponding to Γ with finitely many
edges and the coupling at vertices Xj given by unitary matrices Uj . The
asymptotics of the resonance counting function as R →∞ is of the form

N(R,F ) =
2W

π
R +O(1) ,

where W is the effective size of the graph. One always has

0 ≤W ≤ V :=
N∑
j=1

lj .

Moreover W < V (that is, graph is non-Weyl in the terminology of
[Davies-Pushnitski’11] if and only if there exists a vertex where the
corresponding energy dependent coupling matrix Ũj(k) has an eigenvalue
(1− k)/(1 + k) or (1 + k)/(1− k).
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Permutation invariant couplings
Now we apply the result to graphs with coupling invariant w.r.t. edge
permutations. These are described by matrices Uj = ajJ + bj I , where
aj , bj ∈ C such that |bj | = 1 and |bj + ajdegXj | = 1; matrix J has all
the entries equal to one.

Note that both the δ and δ′s are particular cases of such a coupling.

We need two simple auxiliary statements:

Lemma

The matrix U = aJn×n + bIn×n has n− 1 eigenvalues b and one eigenvalue
na + b. Its inverse is U−1 = − a

b(an+b)Jn×n + 1
b In×n.

Lemma

Let p internal and q external edges be coupled with b.c. given by
U = aJ(p+q)×(p+q) + bI(p+q)×(p+q). Then the energy-dependent effective

matrix of the compact part is Ũ(k) = ab(1−k)−a(1+k)
(aq+b)(1−k)−(k+1)Jp×p + bIp×p.
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Asymptotics in the permutation-symmetric case

Combining them with the above theorem we find easily that there are
only two cases which exhibit non-Weyl asymptotics here:

Theorem (Davies-E-Lipovský’10)

Let (Γ,HU) be a quantum graph with permutation-symmetric coupling
conditions at the vertices, Uj = ajJ + bj I . Then it has non-Weyl
asymptotics if and only if at least one of its vertices is balanced, p = q,
and the coupling at this vertex is either

(a) fj = fn, ∀j , n ≤ 2p,
∑2p

j=1 f
′
j = 0, i.e. U = 1

pJ2p×2p − I2p×2p , or

(b) f ′j = f ′n, ∀j , n ≤ 2p,
∑2p

j=1 fj = 0, i.e. U = − 1
pJ2p×2p + I2p×2p .
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What can cause a non-Weyl asymptotics?
We will argue that (anti)Kirchhoff conditions at balanced vertices are
too easy to decouple diminishing in this way effectively the graph size.

Γ0

U (2) U (1)

l0

Consider the above graph with a balanced vertex X1 which connects p
internal edges of the same length l0 and p external edges with the coupling
given by a unitary U(1) = aJ2p×2p + bI2p×2p. The coupling to the rest of
the graph, denoted as Γ0, is described by a q × q matrix U(2), where
q ≥ p; needless to say such a matrix can hide different topologies of this
part of the graph.

Remark: The assumption about the same edge length is made for
convenience only; we can always satisfy it by adding Kirchhhoff vertices

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 31/58



What can cause a non-Weyl asymptotics?
We will argue that (anti)Kirchhoff conditions at balanced vertices are
too easy to decouple diminishing in this way effectively the graph size.

Γ0

U (2) U (1)

l0

Consider the above graph with a balanced vertex X1 which connects p
internal edges of the same length l0 and p external edges with the coupling
given by a unitary U(1) = aJ2p×2p + bI2p×2p. The coupling to the rest of
the graph, denoted as Γ0, is described by a q × q matrix U(2), where
q ≥ p; needless to say such a matrix can hide different topologies of this
part of the graph.

Remark: The assumption about the same edge length is made for
convenience only; we can always satisfy it by adding Kirchhhoff vertices

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 31/58



What can cause a non-Weyl asymptotics?
We will argue that (anti)Kirchhoff conditions at balanced vertices are
too easy to decouple diminishing in this way effectively the graph size.

Γ0

U (2) U (1)

l0

Consider the above graph with a balanced vertex X1 which connects p
internal edges of the same length l0 and p external edges with the coupling
given by a unitary U(1) = aJ2p×2p + bI2p×2p. The coupling to the rest of
the graph, denoted as Γ0, is described by a q × q matrix U(2), where
q ≥ p; needless to say such a matrix can hide different topologies of this
part of the graph.

Remark: The assumption about the same edge length is made for
convenience only; we can always satisfy it by adding Kirchhhoff vertices

Pavel Exner: Resonances in networks CSP 2013 Samarkand May 23, 2013 31/58



A simple unitary equivalence result

Proposition

Consider Γ be the the coupling given by arbitrary U(1) and U(2). Let
V be an arbitrary unitary p × p matrix, V (1) := diag (V ,V ) and
V (2) := diag (I(q−p)×(q−p),V ) be 2p × 2p and q × q block diagonal
matrices, respectively. Then H on Γ is unitarily equivalent to the
Hamiltonian HV on topologically the same graph with the coupling
given by the matrices [V (1)]−1U(1)V (1) and [V (2)]−1U(2)V (2).

We apply it to our system: let U(1) = aJ2p×2p + bI2p×2p at X1. We
choose columns of W as an orthonormal set of eigenvectors of the
p × p block aJp×p + bIp×p, the first one being 1√

p (1, 1, . . . , 1)T. The

transformed matrix [V (1)]−1U(1)V (1) decouples into blocks connecting
only pairs (vj , gj).
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Implications for permutation-symmetric coupling

The first one corresponding to a symmetrization of all the uj ’s and fj ’s,
leads to the 2× 2 matrix U2×2 = apJ2×2 + bI2×2, while the other lead to
separation of the corresponding internal and external edges described by
the Robin conditions, (b − 1)vj(0) + i(b + 1)v ′j (0) = 0 and
(b − 1)gj(0) + i(b + 1)g ′j (0) = 0 for j = 2, . . . , p.

The “overall” Kirchhoff/anti-Kirchhoff condition at X1 is transformed to
the “line” Kirchhoff/anti-Kirchhoff condition in the subspace of
permutation-symmetric functions, reducing the graph size by l0. In all
the other cases the point interaction corresponding to the matrix
apJ2×2 + bI2×2 is nontrivial, and consequently, the graph size is preserved.
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Unbalanced non-Weyl graphs

On the other hand, in graphs with unbalanced vertices there are many
cases of non-Weyl behaviour. To demonstrate it we employ another unitary
equivalence trick based this time on the unitary transformation W−1UW ,
where W is block diagonal with a nontrivial unitary q × q part W4,

W =

(
eiϕIp×p 0

0 W4

)

One can check easily the following claim:

Proposition

The operators HU and HW−1UW are unitarily equivalent, and as a
consequence, the family of resonances of HU does not change if the
original coupling matrix U is replaced by W−1UW.
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Example: line with a stub

f1(x) f2(x)

u(x)

0

l

The Hamiltonian acts as −d2/dx2 on graph Γ consisting of two half-lines
and one internal edge of length l . Its domain contains functions from
W 2,2(Γ) which satisfy

(U − I ) (u(0), f1(0), f2(0))T + i(U + I ) (u′(0), f ′1(0), f ′2(0))T = 0 ,

u(l) + cu′(l) = 0 ;

fi (x) referring to half-lines and u(x) to the internal edge.
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Example, continued

We start from the matrix U0 =

 0 1 0

1 0 0

0 0 eiψ

, describing one half-line

separated from the rest of the graph. As mentioned above such a graph
has non-Weyl asymptotics (obviously, it cannot have more than two
resonances)

Using UW = W−1UW with W =

 1 0 0

0 reiϕ1
√

1− r2 eiϕ2

0
√

1− r2 eiϕ3 −rei(ϕ2+ϕ3−ϕ1)


we arrive at a three-parameter family with the same resonances — thus
non-Weyl — described by

U =

 0 reiϕ1
√

1− r2eiϕ2

re−iϕ1 (1− r2)eiψ −r
√

1− r2e−i(−ψ+ϕ1−ϕ2)
√

1− r2e−iϕ2 −r
√

1− r2ei(ψ+ϕ1−ϕ2) r2eiψ


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Effective size is a global property

One may ask whether there are geometrical rules that would quantify
separately the effect of each balanced vertex on the asymptotics. The
following example shows that this is not the case:

l

l

l

l

l

For a fixed integer n ≥ 3 we start with a regular n-gon, each edge having
length `, and attach two semi-infinite leads to each vertex, so that each
vertex is balanced; thus the effective size Wn is strictly less than Vn = n`.
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Example, continued

Proposition

The effective size of the graph Γn is given by

Wn =

{
n`/2 if n 6= 0 mod 4,

(n − 2)`/2 if n = 0 mod 4.

Sketch of the proof: We employ Bloch/Floquet decomposition of H w.r.t.
the cyclic rotation group Zn. It leads to analysis of one segment with
“quasimomentum” ω satisfying ωn = 1; after a short computation we find
that Hω has a resonance iff

−2(ω2 + 1) + 4ωe−ik` = 0.

Hence the effective size Wω of the system of resonances of Hω is `/2 if
ω2 + 1 6= 0 but it is zero if ω2 + 1 = 0. Now ω2 + 1 = 0 is not soluble if
ωn = 1 and n 6= 0 mod 4, but it has two solutions if n = 0 mod 4. �
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Adding a magnetic field

Now the Hamiltonian acts as −d2/dx2 at the infinite leads and as
−(d/dx + iAj(x))2 at the internal edges, where Aj is the tangent
component of the vector potential.

Its domain consists of functions in W 2,2(Γ) satisfying

(Uj − I )Ψj + i(Uj + I )(Ψ′j + iAjΨj) = 0

Using the local gauge transformation ψj(x) 7→ ψj(x)e−iχj (x) with
χj(x)′ = Aj(x) one gets unitary equivalence to free Hamiltonian with
the coupling

(UA − I )Ψ + i(UA + I )Ψ′ = 0 , UA := FUF−1 ,

where F = diag (1, exp (iΦ1), . . . , 1, exp (iΦN), 1, . . . , 1) containing

magnetic fluxes Φj =
∫ lj

0 Aj(x)dx
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Magnetic graph high-energy asymptotics

Theorem (E-Lipovský’11)

Let Γ be a quantum graph with N internal and M external edges and
coupling given by a (2N + M)× (2N + M) unitary matrix U. Let ΓV

be obtained from Γ by replacing U by V−1UV where
(V1 0

0 V2

)
is unitary

block-diagonal matrix consisting of a 2N × 2N block V1 and an M ×M
block V2. Then ΓV has a non-Weyl resonance asymptotics iff Γ does.

Proof: Using the effective coupling matrix Ũ(k) as in the non-magnetic
case �

Corollary

Let Γ be a quantum graph with Weyl resonance asymptotics. Then ΓA

has also the Weyl asymptotics for any profile of the magnetic field.
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Let Γ be a quantum graph with N internal and M external edges and
coupling given by a (2N + M)× (2N + M) unitary matrix U. Let ΓV

be obtained from Γ by replacing U by V−1UV where
(V1 0

0 V2

)
is unitary

block-diagonal matrix consisting of a 2N × 2N block V1 and an M ×M
block V2. Then ΓV has a non-Weyl resonance asymptotics iff Γ does.

Proof: Using the effective coupling matrix Ũ(k) as in the non-magnetic
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Example: the effective size can be affected

The magnetic field can change, though, the effective size, as the following
example shows:

0

l
B

This (Kirchhoff) graph is non-Weyl for A = 0, and thus for any A. The
resonance condition is easily found to be

−2 cos Φ + e−ikl = 0 ,

where Φ = Al is the loop flux. For Φ = ±π/2 (modπ), odd multiples of a
quarter of the flux quantum 2π, the l-independent term disappears. The
effective size of the graph is then zero; it is straightforward to see that in
the present case there are no resonances at all.
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Generalized graphs

Let us finally mention briefly a generalization of quantum graphs, with
“edges” of different dimensions – some speak in this connection about
hedgehog manifolds

For simplicity we consider the case with a single manifold part only
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The formalism

We generalize here slightly [E-Tater-Vaněk’01, [Brüning-Geyler’03],
[Brüning-E-Geyler’03] where each lead was supposed to be attached
at a different point.

Let Ω be a compact Riemannian manifold of dimension d = 2, 3 with
metric g from which we make Γ by attaching M =

∑
j nj halflines at

points xj ∈ Ω. The state space is

H = L2(Ω, dg)
M⊕
i=1

L2(R(i)
+ )

In the manifold part, let H0 be Laplace-Beltrami operator acting on
C∞0 (Ω) as −g−1/2∂r (g1/2∂r ) with suitable b.c. if Ω has a boundary;
by H ′0 we denote it restriction to functions {f (x) : f (xj) = 0} which
is a symmetric operator with deficiency indices (n, n).
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Formalism, continued

Let further H ′i be restriction of the Laplacian on ith halfline to functions

from C∞0 (R(i)
+ ). The operator

H ′ = H ′0 ⊕ H ′1 ⊕ · · · ⊕ H ′M

has obviously deficiency indices (n + M, n + M)

To construct self-adjoint extensions of the operator H ′ we need
(generalized) boundary values. f ∈ D((H ′0)∗) can be expanded near xj
as f (x) = cj(f )F0(x , xj) + dj(f ) +O(r(x , xj)), where

F0(x , xj) =

 −
q2(x ,xj )

2π ln r(x , xj) d = 2

q3(x ,xj )
4π (r(x , xj))−1 d = 3

here q2, q3 are continuous functions of x with qi (xj , xj) = 1 and r(x , xj)
denotes the geodesic distance between x and xj
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Self-adjoint extensions

Using the expansion we write the boundary values as

Ψ = (d1(f ), . . . , dn(f ), f1(0), . . . , fM(0))T ,

Ψ′ = (c1(f ), . . . , cn(f ), f ′1(0), . . . , f ′M(0))T ,

and describe any s-a extension of H ′ by the conditions

(U − I )Ψ + i(U + I )Ψ′ = 0

where U is an (n + M)× (n + M) unitary matrix.

This covers all the self-adjoint extensions of H ′ including those allowing
‘hopping’ between vertices. We are interested in local ones only; they are
characterized by block-diagonal matrices U which does not couple
different points xi and xj .
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Effective coupling on the manifold

As in the quantum graph case we can study resonances on hedgehog
manifolds replacing external leads by an effective energy-dependent
coupling at the points xj ∈ Ω as follows

(Ũj(k)− 1)dj(f ) + i(Ũj(k) + 1)cj(f ) = 0

where Ũj(k) ∈ C is easily seen to be given by

Ũj(k) = U1j − (1− k)U2j [(1− k)U4j − (k + 1)I ]−1U3j

and U1j denotes top-left entry of Uj , U2j the rest of the first row, U3j

the rest of the first column and U4j is nj × nj part corresponding to
the coupling between the halflines attached to the manifold.

In a sense we have replaced again the leads by k-dependent point
interactions on the manifold Ω itself.
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Scattering and resolvent resonances

We have a natural framework to study Ω as a geometric scatterer taking
solution of Schrödinger equation on the j-th lead as aj(k)e−ikx + bj(k)eikx

A caveat: Since the leads are positive halflines, our S-matrix convention
differs from the one used in 1D scattering:

S(k)−1 = S(−k) = S∗(k̄)

By scattering resonance we mean a pole of the scattering matrix, more
precisely, the (complex) energy at which some of its entries has a pole

By resolvent resonance we mean a pole in analytical continuation of
(H − k2)−1. As before we can use exterior complex scaling on the edges
turning resonances into ev’s of the non-selfadjoint operator Hθ := UθHU

−1
θ
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Resonance equivalence

Lemma

Let H
∣∣
Ω
f (x , k) = kf (x , k) hold for k2 6∈ σ(H0), then f is as a linear

combination of Green’s functions of HΩ,

f (x , k) =
n∑

j=1

cjG (x , xj ; k)

Proof modifies the argument of [Kiselev’97].

Using this result we can prove

Theorem (E-Lipovský’11)

Consider the lower complex halfplane of momentum, Im k < 0 and
k2 6∈ R. There is a scattering resonance in k0 iff there is a resolvent
resonance in k0, and the algebraic multiplicities of resonances defined
in both ways coincide.
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Proof sketch

Using the lemma and aj(k)e−ikx + bj(k)eikx as Ansatz on the leads one
arrives at the condition

A(k0)a + B(k0)b + C (k0)c = 0 ,

where A,B are (P + M)×M matrices, C is (P + M)× P matrix, P is
the number of internal parameters of the geometric scatterer and M is
the number of halflines.

If k2
0 6∈ R the columns of C (k0) are linearly independent, otherwise k0

would have to be an eigenvalue. A rearrangement allows us to express c;
substituting it to the remaining conditions we get

Ã(k0)a + B̃(k0)b = 0

with Ã(k0) and B̃(k0) being M ×M matrices.
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Proof sketch, continued

If det Ã(k0) = 0 holds than there is a solution with b = 0 and k0 is
an eigenvalue of H with Im k0 < 0 , however, this contradicts the
selfadjointness of H. Hence by Cramer’s rule the scattering resonances
are given by the condition det B̃(k) = 0.

The solution aj(k)e−ikx on the j-th halfline is taken by Uθ into an
exponentially growing one if Im k0 < 0 and Im θ > 0, while bj(k)eikx

becomes square integrable. Hence solving the eigenvalue problem for Hθ

one needs to find solutions with a = 0. This leads again to the condition
det B̃(k) = 0 proving thus the claim. �
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Explicit resonance condition

The above lemma allows us to express the boundary values using
expansion of deficiency subspace elements,

f (xi , k) = ciF0(xi , xi ) +
n∑
j 6=i

cjF0(xi , xj ) +
n∑

j=1

cjF1(xi , xj ; k) +
n∑

j=1

cjR(xi , xj ; k)

where R(xi , xj ; k) is O(r(xi , xj))

Let Ũ(k) = diag (Ũ1(k), . . . , Ũn(k), ); definition of Ũj(k) shows that
Ũ(k) diverges at at most M values of k. We define

Q0(k) =

{
G (xi , xj ; k) i 6= j

F1(xi , xi ; k) i = j

The resonance condition then reads as follows

det
[
(Ũ(k)− I )Q0(k) + i(Ũ(k) + I )

]
= 0
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(Ũ(k)− I )Q0(k) + i(Ũ(k) + I )
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Magnetic ‘hedgehogs’: an example
Due to the 2D nature of the manifold no ‘non-Weyl’ surprises are
expected. However, we are going to illustrate that even for generalized
graphs a magnetic field can kill all ‘true’ resonances of the system.

We consider Ω being a disc with Dirichlet boundary to which a lead is
attached, the field is zero outside z-axis being of Aharonov-Bohm type
passing through the centre of the disc

R
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Disc-and-lead example, continued

Coupling of the manifold and the lead can be constructed by modification
of the [Adami-Teta’98], [Dabrowski-Št’ov́ıček’98] way to combine point
interaction with an AB flux

The Hamiltonian on H = L2((0,R), rdr)⊗ L2(S1)⊕ L2(R+) will be a
self-adjoint extension of the operator

Ḣα

(
u

f

)
=

 −∂2u
∂r2 − 1

r
∂u
∂r + 1

r2

(
i ∂∂ϕ − α

)2
u

−f ′′


defined on functions

(u
f

)
with u ∈ H2

loc(BR(0)) satisfying conditions
u(0, ϕ) = u(R, ϕ) = 0 and f ∈ H2

loc(R+) s.t. f (0) = f ′(0) = 0

We take α ∈ (0, 1) for the value of the magnetic flux since integer
values can be easily gauged away
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Disc-and-lead example, continued
By partial-wave decomposition we have to analyze the operators

ḣα,mφ = −d2φ

dr2
+

(m + α)2 − 1/4

r2
φ ;

for α 6= 0 the components with m = 0,−1 can be coupled

We employ the following boundary values

Φ−1
1 (ψ) =

√
π lim

r→0

r1−α

2π

∫ 2π

0

u(r , ϕ)eiϕdϕ ,

Φ−1
2 (ψ) =

√
π lim

r→0

r−1+α

2π

[∫ 2π

0

u(r , ϕ)eiϕdϕ− 2πr−1+αΦ1
−1(ψ)

]
,

Φ0
1(ψ) =

√
π lim

r→0

rα

2π

∫ 2π

0

u(r , ϕ)dϕ ,

Φ0
2(ψ) =

√
π lim

r→0

r−α

2π

[∫ 2π

0

u(r , ϕ)dϕ− 2πr−αΦ0
1(ψ)

]
,

Φh
1 (ψ) = f (0) , Φh

2 (ψ) = f ′(0) .
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Disc-and-lead example, continued

If the resonances should be absent one has to get rid, e.g., of the potential
for the m = 0 function, hence we choose α = 1/2 and the coupling
conditions

(U − I )Φ1(ψ) + i(U + I )Φ2(ψ) = 0 ,

where Φa(ψ) = (Φh
a ,Φ

0
a,Φ

−1
a )T for a = 1, 2, and

U =

 0 1 0

1 0 0

0 0 eiρ

 ,

i.e. the nonradial part (m = −1) of the disc function is coupled to neither
of the other two, while the radial part (m = 0) is coupled to the halfline
via Kirchhoff condition.
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Disc-and-lead example, concluded

The generalized eigenfunction allowed by these conditions has
u(r) = r−1/2(c sin k(R − r)) and f (x) = c

√
π sin k(x + R)

Hence for any k 6∈ R and c 6= 0 the function f contains a nontrivial
part of the wave e−ikx , however, a resolvent resonance must have the
asymptotics eikx only. This allows us to conclude:

Proposition (E-Lipovský’13)

The described system has no true resonances for the indicated disc-lead
coupling and the magnetic flux α = 1

2 .
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The results discussed in the talk come from
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It remains to say

Thank you for your attention!
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