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A Sensor Web contains a group of distributed and heterogeneous 
sensors interconnected by a communication center (internet) and 
sharing data  and information through interoperable inter-faces.  
Users are  able to access and control the sensors via World Wide 
Web (WWW).  
 

Sensor Web  



Sensor Web  



1. Fast, cheap, reliable,  responsive and sensitive   (i.e. high signal-
to-noise ratio) sensors temperature, pressure). 

2. Information theoretical approaches  able to extract information 
from noisy data sequence  (e.g. Shannon measures) 

Understanding noise is a central issue for the development of  
any new technology underlying the Sensor Web.  
 
Additionally, it  represents a tool for early detection of  deviations 
from the correct operation conditions (‘disaster prediction’) . 

The sensor web is a fast developing technology , relying on:   
 

Sensor Web  



Graphene layered structures 

SINGLE LAYER FEW LAYERS MULTI LAYERS 



Quantum Well/Dots Layered Structures 

Large arrays of  QW/QD structures are the basic unit  for airborne/satellite  
infrared observations (for example earth observations, global warming monitoring,  …)  
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Josephson Junction Arrays (weak-links) 

• Temperature increases 

• Layers  are formed when a JJ 
weak-link achieves  the resistive 
state (intermediate, green, first,   
and, then, normal green) 

• Grains (network nodes) remain in 
the superconductive state 
(orange) 
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• Temperature increases 

• Layers are formed when each grain achieves  
the resistive state (intermediate, green, first,   
and, then, normal green) 

Josephson Junction Arrays  (strong-links) 



High Tc Superconductors 

Cuprate superconductors 
have a layered structure  
with the superconductivity 
taking place mostly at the 
Cu2O planes. 
 
The other layers act as 
charge reservoir. 



10 

Transition Edge Sensors 



What about noise in a layered structure? 
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How to model the  nonuniformity of the charge  
distribution across the layers  ? 

First of all , let us consider the quasiparticle continuity equation, which describes 
the generation of two quasiparticles upon breaking a Cooper pair by a thermal  
phonon  and their annihilation, when they form a Cooper pair and emit a phonon.. 
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Quasiparticles generation/recombination fluctuations 

negligible 



Quasi particles fluctuations in low Tc superconductors   

Aluminium 



Quasiparticles fluctuations in high Tc superconductors ! 
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In order to account for the discreteness of the generation-recombination 
sources  (i.e. to take into consideration that the g-r  processes are localized in a 
few layers) the x’ variable is taken as discrete.  
In particular, one can write that x’ varies from d to Md, with d being the  
distance between the layers nad the sum is performed over k ranging from d to 
Md 

d2 d1 d3 d4 d5 d6 
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Conclusions 

A generation/recombination noise model has been put forward  
for  multilayered systems, where the generation/recombination  
processes occur at separate discrete layers. 
 
The model has been applied to model quasiparticle fluctuations  
by using a continuity equation   modified to consider the discreteness  
of the recombination centers . 
 
The approach is general and can be deployed for different  
layered systems with transport processes  occurring via  
 sources  and sinks of carriers. 
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