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Motivation 

Various types of transport occur in Physics, Chemistry and Biology: 
•  Motion of defects in crystals  
•  Exciton dynamics in molecular 
    systems (light-harvesting 
    complexes in photosynthesis) 
•  Energy transfer between 
    Rydberg atoms 
•  Electronic conductivity in condensed matter 
•  Light propagation in wave guide arrays  



Fundamental aspects of transport 

Dynamics over networks (discrete sets) in continuous time. 
 
 
 
 
Two limiting pictures appear: 
A)  Classical motion (incoherent) 
•  Stepwise transfer over a set of sites (network of participating 

centers) 
•  Model: Continuous-Time Random Walk (CTRW) 
B)  Quantum mechanical motion (coherent) 
•  Wavelike motion over the network. Assumptions here 

(phenomenological): „two-level“ systems, tight binding picture 
•  One model: Continuous-Time Quantum Walk (CTQW) 



Basic questions 

How does the topology of the network  
influence the classical or the quantum transfer? 

 
How do classical or quantum dynamics influence  

reaction kinetics? 
 
 

	  
	  
	  
Recent review on quantum transfer and on simple reactions 
O. Mülken and A.B., Physics Reports 502, 37 (2011) 



Networks 
•  Network: Set of N connected sites (nodes) 
   
 
 
•  The nodes span a N-dimensional vector space  
     with a complete orthonormal basis, e.g., 
 
 
 
 
•  The topology is given by the connectivity matrix A = (Akj) 
 
 
 
 
Here     is the number of bonds stemming from node j  

(ring) 
(dendrimer) 
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Example: Connectivity matrix A for a ring of N nodes  

 
 
 
 
 
 
 

Or, in operator form: 
 
 
Question: What is the probability pkj(t) (classical) or         (quantum mechanical) 

                 to be at node k after time t when starting at node j at time 0? 

Here the initial condition is either                     
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A = 2 m m − m −1 m − m +1 m( )
m
∑ , where N +1 = 1 .
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πkj t( )
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pkj 0( ) = δkj or πkj 0( ) = δkj .



Transition rates 

•  Classical transition probabilities 
     Initial node j: 

     State after time t: 

     Probability of being at node k at time t: 

 
 
 
 

•  The transition rates per unit time between two nodes are given by  
     the transfer matrix T with elements 
 

•  In the simplest case the transfer matrix is 
    (having equal transition rates      between all bonds) 
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Master Equation (CTRW) 

•  The classical motion over the network is determined by the transfer matrix T. 
The CTRW dynamics obeys the Master Equation (ME) 

     
     In the simplest case                       the same for all nodes) 
 
•  The ME is similar to the diffusion equation; A acts as Laplacian 
•  The complete solution of the ME (a linear equation) is obtained by 

determining the eigenvalues       and the eigenstates        of T 
•  Formally, the ME solution can be written (akin to quantum mechanics) as  
      
                    
               being the time-evolution operator  
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CTRW dynamics at long times 

As in the case of diffusion, the CTRW are irreversible. 
Using the time evolution operator and the completeness of the set 
 
 
 
For a finite, connected network, A has a single vanishing eigenvalue. 
The other eigenvalues are all positive. 
 

We set                                            . 

 
At long times, in  pkj(t) only the term corresponding to n =1 survives. 
One has ground state dominance for  t >>1,  
Hence the  pkj(t)  attain equipartition.  
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The way to the Continuous Time Quantum Walks (CTQW)	  
Farhi and Gutmann, Phys. Rev. A 58, 915 (1998)	  

Quantum mechanically, the states        (representing the nodes) span the 
accessible Hilbert space. Furthermore, they obey: 
 
 
The transition amplitudes and the transition probabilities are given by 
 
 
The Schrödinger equation (SE) reads (setting          ) 
 
 
 
The introduction of CTQWs 
Taking H = −T leads to identical right-hand-side expressions of the SE and of 
the Master Equation. Hence the solution of the SE again requires determining 
the En  and the         . 
The fundamental difference between SE and ME is „i“, the imaginary unit 
multiplying     . 
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Dynamics over networks − CTQWs 

•  The CTRW are irreversible and reach equipartition over the network 
•  The CTQW are unitary and thus reversible: there exists no definite 

limiting value (t   ) for 

•  In order to compare to CTRW one has to use long time averages 

•  Here        depends both on k and on j 
•         reflects the connectivity of the network 
•             equals 1 if                  and is zero otherwise 
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An example: CTQWs over a ring (a 1D regular network)	  
O. Mülken and A.B., Phys. Rev. E 71, 036128 (2005) 

•  Consider a quantum particle on a discrete ring 

 
 
•  Bloch ansatz: The time independent SE reads                         , with 

 

•  The time evolution of state       is given by  
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1D regular networks – Dynamics; Results 
O. Mülken and A.B., Phys. Rev. E 71, 036128 (2005) 

•   There appear characteristic regular 
   patterns in space-time 
 

•   One observes almost complete revivals 
   at times     at which 
 
 
•  One observes wave interferences 
 

•  The results are discrete analogs of 
  quantum carpets and of Talbot revivals 
 
Grossmann, Rost, Schleich, J. Phys. A 30, 
 L 277 (1997) 
Berry, Marzoli, Schleich, Phys. Today,  
June 2001 
Iwanow et al., Phys. Rev. Lett. 95, 053902 (2005) 

N=21 N=20 

Dark= high, bright = low probability  

The discreteness diminishes the probability of finding perfect revivals  
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	  for finite dual Sierpinski gaskets; here 
 E. Agliari, A.B., O. Mülken, J. Phys. A 41, 445301 (2008) 

     

π kj (t) π k1(t)

 
Exact probability 
for the CTRW starting 
from j = 1 (apex) 
to reach sites 
k = 1, 2, 5 and 14.  

π kj (t)



for the finite dual Sierpinski gasket with g	  =	  3	  
E. Agliari, A.B., O. Mülken, J. Phys. A 41,445301 (2008) 

	  

	  
	  
	  
	  
	  
	  
	  
 
 
 
The walker stays a long time close to its original node; the      are large 
only for clusters of sites directly connected by bonds. 
 

π kj (t)

 
t = 0 

 
t = 1 

 
t = 3 
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Dendrimers – Hyperbranched networks 
O. Mülken and A.B., J. Chem. Phys. 124, 124905 (2006) 

      Dendrimers 
 
 
 
 
•  Chemical realisation: 
     hyperbranched  
     macromolecules with                     g = 2                            g = 3 
     a very regular structure 
•  Their number of nodes grows exponentially with their generation 
•  They show highly degenerated eigenvalues 
•  They display a strong dependence of CTQW on the initial conditions 
 



for the dendrimer with f = 3 and g = 3 
E. Agliari, A.B., O. Mülken, J. Phys. A 41, 445301 (2008) 

 

π kj (t)

Findings: A large fraction of       is 
localized on particular pairs of 
nearest-neighbor sites; again the 
walker stays a long time close to its 
original node.  
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for a square torus of linear size L = 5  
E. Agliari, A.B., O. Mülken, J. Phys. A 41, 445301 (2008) 
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1D regular networks – Situation at long times 
O. Mülken and A.B., Phys. Rev. E 71, 036128 (2005)  

•  The long time average       reflects the parity of the lattice 

 
 
•  Odd N: One peak at j, equal distribution over all other nodes 
•  Even N: Two peaks at j and j ± N / 2, reflecting constructive 
     interference at j ± N / 2 
 
 
 
•  Reminder: for CTRW one has equipartition, pkj =1 / N  
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for finite dual Sierpinski gaskets 
E. Agliari, A.B., O. Mülken, J. Phys. A 41, 445301 (2008) 
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Note that the global maxima lay on the main diagonal. The patterns are 
self-similar, as exemplified by the indicated substructures.  

g = 3 g = 4 



for dendrimers (hyperbranched networks) 
O. Mülken, V. Bierbaum, A.B., J. Chem. Phys. 124, 124905 (2006) 

•  Depending on the  initial condition, the          cluster 
•  For excitations starting at the center: we find concentric transport 
•  For excitations starting at a peripheral site: the excitation stays close to 
      the initial node     
 
 
                                                  
 

Most evident in the long time average  
 
 
 
 
 
 
• We find a self-similar structure for the  
• The clusters of equal probabilities 
 depend on the initial condition 
• Mapping to a line possible if j = 1 
• The CTRW leads to equipartition  
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for Husimi cacti  
O. Mülken, A.B., V. Bierbaum, Physica A 371, 10 (2006) 

Husimi cacti: 
Construction: Replace the bonds of dendrimers by nodes and connect 
neighboring nodes. 
Thus: The Husimi cacti are dual to the dendrimers and have loops.  
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• The results are similar to those of the dendrimers. 

• There is almost no influence of the loops on the CTQW.  



The CTQW transport efficiency 
O. Mülken and A.B., Phys. Rev. E73, 066117 (2006) 

The return probabilities         allow to quantify the transport performance 
•                  probability to be at any of the nodes k ≠ j 
•  Average over all j: global statement 

      Quick decay of            fast propagation through the network 
      Slow decay of             slow propagation through the network 
 

Classical case (CTRW): 
 
 
 
Quantum case (CTQW): 
      To evaluate          one needs the eigenstates       ! 
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The CTQW transport efficiency (continued) 
O. Mülken and A.B., Phys. Rev. E 73, 066117 (2006) 

Simplification of the quantum mechanical evaluation 
Remark: There exists a lower bound (based on the Cauchy-Schwarz 
inequality): 
 
 
•           depends only on the eigenvalues En 
 

•             oscillates: 
               Use envelope env           to compare to  
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Transport efficiency over rings and dendrimers	  
O. Mülken and A.B., Phys. Rev. E 73, 066117 (2006) 

Examples: 
(a)  Discrete ring 
                                       is dominated by the smallest En 

                                                                      for n small:  
 
 
Quantum mechanically 
 
 

 
(b) Dendrimer with g = 10 

p(t) = (1/ N) e−Ent

n
∑

En = 2− 2cos(2πn / N); En ≈ 4π 2n2 / N2.

p(t) ~ t −1/2

env π (t)!" #$~ t −1



General remarks on the efficiency of the transport	  
O. Mülken and A.B., Phys. Rev. E 73, 066117 (2006) 

Continuous DOS                                         and  
 
 
 
Classical: 
 
 
Quantum: 

ρ(E) : p(t) = d∫ Eρ(E)e−Et π (t) ≥ dEρ(E)eiEt∫
2

ρ(E) ~ Eν

p(t) ~ t −(1+ν )

env α(t)
2!

"
#

$
%
& ~ t −2(1+ν )

(a) 1D regular network, (b) random graph with the  
DOS given by Wigner’s semicircle law.   



CTQW over Small-World Networks (SWN) 
O. Mülken, V. Pernice, A.B., Phys. Rev. E 76, 051125 (2007) 

•  SWN are models for systems with 
     short and long range interactions. 
 
•  Applications in various fields. 
•  Statistical statements – ensemble average. 
 
 
 
                                                                        SWN: ring with additional bonds 

     We find for CTQWs over SWN: 
•  A fast transport through the SWN. 
•  No equipartition but a strong dependence on the initial node. 
•  No Anderson localization. 



and            for CTQW over SWN 
O. Mülken, V. Pernice, A.B., Phys. Rev. E 76, 051125 (2007) 

p(t)
R

π (t)
R

Increasing the number of additional bond leads for CTRW and CTQW to a  
faster decay for the return probabilities 
 
•  Long time average, also over 
     the realizations R: 
 
 
 
•  The En  of SWN are almost 
     always non-degenerate. 
 
 
 
•           depends on the eigenstates. 
•  We find localized eigenstates 
     at the band edges. 
•  For the ring, equipartition: 1 / N2 

       Here, N = 100. 
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Trapping in the CTQW picture 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

The moving entities (ions, electrons, excitons) may get trapped 
Model: Out of the N nodes M are traps (absorbing sinks) 
We denote the set of traps by  
Let      (classical) and      (quantal) denote the situation without traps.  
We introduce the traps by including a trapping matrix (operator)  
 
 
 
Then 
•  CTRW: 
•  CTQW: 
 

M
Τ0 Η0

Γmm = Γ > 0
0

for
else
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Τ = Τ0 − Γ,
Η = Η0 − iΓ,

Γ



Implications of trapping in the CTQW scheme 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

 Phys. Rev. Lett. 99, 090601 (2007) 
 

Properties of H 
•  H is non-hermitian  H ≠ H† 

•  H has N complex eigenvalues,  

•  H has N left and N right eigenstates,         and          generally: 

                               and	  
 
 

The       determine the temporal decay of 
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General situation for trapping	  
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

In an ideal experiment one would excite one node            and read out 
the probability          to be at node             at time t. Realistically, each 
node which is not a trap can be excited with equal probability. 
In this case the mean survival probabilities are:  
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CTQW trapping behaviour 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

Phys. Rev. Lett. 99, 090601 (2007) 

For small M / N and t large           simplifies considerably: 
 

•  At long times the oscillating term drops out and for small M / N we can assume 

                                                     Then:          

                                                                                

•  Asymptotically,          is dominated by the     values closest to zero: 
 
 

•  Such long times are not of much experimental relevance 
•  The      often scale in a large j range,             . For densely distributed      and at 

intermediate times:  

ΠM (t)

2 ∑
m∈M

Ψ j m m Ψ j <<1.

ΠM (t) ≈ 1
N −M

exp
j
∑ −2γ jt( )

ΠM (t) γ j

ΠM (t) ≈ exp(−2γmint)

γ jγ j γ j

ΠM (t) ≈ d χe−2atχµ∫ =    dy e−yµ

(2at)−1/µ
~ t −1/µ

~ aj µ

∫



Experimental design using Rydberg gases  
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

Phys. Rev. Lett. 99, 090601 (2007) 

Example: 
Chain of length N with two traps (M = 2) located at its ends (m = 1 and 
m = N); description within a nearest-neighbor tight-binding model 
 

 
 
 
                                                      (Courtesy of M. Weidemüller’s group) 

•  CTQW Hamiltonian:  
    

−iΓ 1 1 − iΓ N N

H = + 2 n n − n −1 n − n +1 n( )
n=2

N−1

∑

+ 1 1 − 2 1( )+ N N − N −1 N( )



Trapping in CTRW 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

Phys. Rev. Lett. 99, 090601 (2007) 

•  CTRW transfer matrix: 

Τ = − 2 n n − n −1 n − n +1 n( )
n=2

N−1

∑

− 1 1 − 2 1( )− N N − N −1 N( )

−Γ 1 1 − Γ N N



Temporal decay of           and of         : 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

	  	  	  	  	  	  

ΠM (t) PM (t)



Analysis of trapping in CTRW and in CTQW	  
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

Phys. Rev. Lett. 99, 090601 (2007) 

The temporal decay of           and         : 
                                                                

Now,          and           differ 
strongly: 
 
 i)             decays practically in 
        an exponential manner 
 ii)             shows two regimes: 
 
•  A power-law decay at 
     intermediate t 
 
 
•  An exponential decay at  
    very long t 

PM (t)

PM (t)

PM (t)

	  	  	  	  	  	  	  	  and          for N = 100 and            PM (t)

ΠM (t)

ΠM (t)

ΠM (t)

ΠM (t)

ΠM (t) ~ t −0.538  (0.538 =1/ µ)

Γ =1.



Imaginary part of the spectrum under trapping 
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller, 

Phys. Rev. Lett. 99, 090601 (2007) 

	  
	  
	  
	  
                  (dots) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (dots) in ascending order for N = 100 and  
 
 

For the imaginary part of the spectrum,                    , we find 
 
                    for                 , with  

Γ =1.γ l

Ej = ε j − iγ j

γ j ~ aj µ 10 ≤ j ≤ 60 µ =1.865



CTQW and trapping on a ring 
E. Agliari, O. Mülken and A.B., Internat. J. Bifurc. Chaos 20, 271 (2010) 

Different distributions of traps act differently in CTRW and CTQW 
 
 
 
 
 
 
 
Consecutive arrangement of traps   
 
                                                     
           Survival probabilities for a 
                                                                                 consecutive arrangement of traps 
                                                                                 N= 48, M = 24 
                                                                                CTRW:           ; CTQW:  PM (t) ΠM (t)



Difference between CTQW and CTRW trapping on a ring	  
E. Agliari, O. Mülken and A.B., Internat. J. Bifurc. Chaos 20, 271 (2010) 

 
 
 
Periodic arrangement of traps  

          
 

                Survival probabilities for a periodic 
                arrangement of traps, N=300. 
                CTRW:         ; CTQW: 

 
The CTQW decay curves tend to a plateau value because some of the 
modes have nodes at all traps’ positions and hence do not „see“ the traps.  
	  

 
 

PM (t) ΠM (t)



CTQW with long-range interactions	  
O. Mülken, V. Pernice, A.B., Phys. Rev. E 77, 021117 (2008) 

Experimental realization of system with traps based on an assembly of Rydberg 
atoms with dipole-dipole interactions going as                         : Distance between 
two nodes). 
 
•  Classically: CTRWs with                  belong to the same universality 
     class as CTRW with NN-interactions: 
•  For          the mean square displacement (MSD) goes as t 
•  For          the MSD diverges 
•  Quantum mechanically: The MSD goes as t2 for all    ≥ 2 
 
•  The MSD is related to the average probability to be at initial node: 
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Study of    and     for CTQW and long-range interactions 	  
O. Mülken, V. Pernice, A.B., Phys. Rev. E 77, 021117 (2008) 

Example: A ring without traps: 

 
Stationary phase approximation:  
For         one has one stat. point,  
 
 
 
For        one has two points,          and  
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Right: classical and quantum MSD for a ring 
(N=1000) without traps. 
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Trapping under long range interactions 	  
O. Mülken and A.B., Physica E 42, 576 (2010) 

Disordered system with one trap 

•  N nodes placed at random in a 
3d box (coordinates          ) 

•  Distance between j and k: 

 
•  Interactions decay as       : 
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Random configuration of N = 100 nodes in a cube  



Trapping under long range interactions 
O. Mülken and A.B., Physica E 42, 576 (2010) 

Disordered systems with one trap 
 
 
 
 
 
 
 
 
 
 
 
                                           
                               with 
Best fit: 
Slight bending of        as reflected in the       , see arrow.  
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Trapping under long range interactions 	  
O. Mülken and A.B., Physica E 42, 576 (2010) 

Disordered systems; one trap 
 
•  Ensemble averages 
 
 

•  The correspondence between 
     and           is not straightforward 
 
•  For all t, exp             is convex and 
     Jensen’s inequality yields:  
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for different N: 
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Take-home messages 

   Transport over a given network can take place coherently, incoherently or show 
an intermediate behavior: the CTQWs are purely quantum-mechanical, the 
CTRWs are purely classical: 

 
  CTRW 

 
•  classical transport 

•  Master equation for pkj(t) 

•  probability 

•  incoherent 

•  diffusive motion 

•  irreversible 

•  equipartition at long t                        

                     There’s plenty of room in the middle… 

          CTQW 
 
•   quantum transport 

•   Schrödinger equation for 

•   probability  

•   coherent 

•   wave interference 

•   reversible 

•   unitary time evolution 

  

∑k pkj (t) =1 ∑k αkj (t)
2
=1

αkj (t)



Analysis of the imaginary part of the spectrum 	  
O. Mülken, A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

The imaginary part of  
the spectrum,  
 
for 
 
Time scale in units of  
 
 
For Rydberg gases 
 
                                                             (dots) in ascending order for N=100 and 
 
•                                 translates to experimentally accessible times of about 
 
•  The smallest decay rate                          corresponds to experimentally 
      unrealistically long times 

Ej = ε j − iγ j :
γ j ~ aj µ (µ =1.865)

10 ≤ j ≤ 60
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Dependence of            on N 
O. Mülken,  A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

	  
	  
	  
	  
 

                
                        N – dependence of            for          . 
 

          For larger N and intermediate t,            scales with N: 
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Dependence of           on N and on  
O. Mülken,  A.B., T. Amthor, C. Giese, M. Reetz-Lamour, M. Weidemüller,  

Phys. Rev. Lett. 99, 090601 (2007) 

Parameter dependence of           :  
 
 
 
 
 
 
 
Left: N-dependence of           for     =1.  Right:     -dependence of           for N = 50. 

 
•  The N-dependence of          : For larger N and intermediate t 
              scales with N  (           for a linear system) 
•  The    -dependence of          : Values of      close to 1 lead to the 

quickest decay, being of the same order as  

ΠM (t)

ΠM (t)

ΠM (t) ΠM (t)

ΠM (t)
ΠM (t)

ΠM (t)

Γ

ΓΓ
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a ~ N−3

Hj , j±1 = −1.
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